Tag Archive for LM3886

Monitoring Amplifier モニターアンプ P3: Speaker Coupling Delay

facebooktwittergoogle_plusredditpinterestlinkedinmailby feather

Hello, こんにちは,


In this article i will present a simple delay circuit that will be used to couple the speakers to the amplifier after a certain settling time was allowed. The circuit also allows for to be controlled by an external 5V logic signal. This can be used to decouple the speakers in case a fault is detected.


The circuit schematic is presented in figure 1 and as you can see it uses just discrete components. It is a linear voltage ramp generator that commands a power transistor. The current charging capacitor C1 and the capacitor’s value are the parameters that set the ramp’s slope.


Speaker delay circuit schematic

Figure 1

In figure 1 Q3 forms a constant current source adjustable via POT1. R1, R2, D1, D2 set a voltage on the base of Q3 of about 5.4V and this means about 6V voltage drop over R6 and POT1 series connection. Assuming Ic3 = Ie3=Icharge,

Icharge = 6V/(R6+POT1)

Lets set POT1 at 90kohms for ease of calculation. This gives R6+POT1 = 100k.

Icharge = 60uA

Since Q3 is in saturation mode we can assume a voltage drop over C-E of about 0.5V so the voltage over the capacitor Vc1= 5.5V. The time for the capacitor to be charged to 5.5V is defined by the below equation:

T= (C1*Vc1)/Icharge = 0.91 second


Q2 buffers the voltage across C1 capacitor. It also provides a small delay until Vc1 reaches around 0.6V to bias Q2’s B-E junction. Q1 acts as a switch and when turned on via a 5V signal it absorbs most of the current from Q3 and capacitor will not be charged.

Q4 has the role to drive the relay. It is a small power transistor and it’s enabled via POT2. This variable transistor has the role to set the on/off steps based on the ramp voltage. If too low the relay will be on very fast and stay on if too high the relay will never activate.

Speaker delay circuit schematic

Figure 2

In figure 2 the time step is 200ms and we can see the ramp is about 1s long, very close to what we calculated. The blue trace is the Fault signal. When a 5V pulse is present the capacitor C1 is discharged very fast (pink trace) and speakers are decoupled (green trace). When the fault signal goes to logic low or ground the ramp generator shortly starts the process and enables the relay after about 1 second.

Speaker delay circuit schematic

Figure 3


Speaker delay circuit schematic

Figure 4

Figure 3 shows how the relay is activated faster if the POT2 is set too low in value and figure 4 shows a correct setting. The yellow trace represents power switched on.

Below you can see the circuit in the right side of the board.

Speaker delay circuit schematic スピーカ遅延回路図


Parts list does not contain the connectors in the schematic because the circuit most likely will be used as a part of something bigger:

Part Quantity
BC549 2
BC559 1
BD139 1
1N4001 3
R 12K 5% 0.25W 3
R 10K 5% 0.25W 2
C 10u 25V 1
POT 250K 1
POT 10K 1

Thank you for visiting,


Monitoring Amplifier モニターアンプ P2: Tone Controls

facebooktwittergoogle_plusredditpinterestlinkedinmailby feather

Hello, こんにちは,


In a previous article I wrote about a monitoring amplifier i want to build. This weekend i could continue with this and i built the tone control circuitry. It is a Baxandall type but the values are a little atypical as i made this tone control tailored for my needs.


I wanted controls that can help in a large format 2 way loudspeakers employing a crossover frequency around 1kHz. I need a shelving filter that can gradually bring up or down that range. Below is the schematic and the graph showing the maximum boost-cut levels.

Schematic of Tone Control Circuit

Schematic of Tone Control Circuit

Tone control range

Tone control range

The schematic represents 1 channel and it is not showing two 100n/63V polyester film capacitors used to decouple TL074 power rails.

List of Materials
# Component Quantity
1 TL074 1
2 C 100n/63V Polyester Film 2
3 R 10k 10
4 R 4k7 4
5 C 47n Polyester 4
6 C 10n Ceramic 4
7 C 150p Ceramic 2
8 Pot Dual 33k 1
9 Pot Dual 150k 1
10 Molex Connector 8 pin 2
11 6 pin header 1
12 Prototype Board 1

I didnt include the 3 pin Molex connector for input you will see in the pictures as i use it temporary to connect 2 RCA female plugs to it. Below you can see the picture of the circuit. It is a bit annoying soldering the SMD components on the prototype board but not a big problem. Since this is a high gain circuit grounding needs increased attention.

tone control circuit トーンコントロール回路図

tone control schematic トーンコントロール回路図


tl074 and caps TL074オペアンプ

SMD resistor

8 pin molex

Connection between boards will be made with a 6 wire shielded cable. This cable type is often used in home security installations like alarms systems and has each of the wires individually shielded.

シールドケーブル shielded cable


The shields are tied together and grounded to one side of the cable only as signal ground is carried on one or more of the six wires. Used thermoretractable tube to isolate the open shield cable end.

shielded cable molex connector シールドケーブルMolexコネクタ


Using the line input of the soundcard i could measure the response of the tone control circuit. As can be seen it is very close to the predicted response. At the bass boost you can see the line getting flatter towards the end because of saturation.

TL074とトーンコントロールオペアンプの周波数応答 Measured Tone Control Response


Here is a picture during tests:

Monitoring Amplifier LM3886 モニターアンプ


The bass control indeed it is just right, at low volume levels you can still get the deep bass without going through walls.

Thank you for visiting,


Monitoring Amplifier モニターアンプ P1

DSC03860 facebooktwittergoogle_plusredditpinterestlinkedinmailby feather

Hello, こんにちは,


I like listening to loud music usually, i like to feel the impact of instruments close to live levels. Of course this is not always possible especially after work at late hours.


To overcome this I decided to build a monitoring amplifier this weekend. It will allow me to see the level of the source before coupling to the power amp and also to switch speakers off and just use headphones.

モニターアンプこの週末を構築することを決めた。ソースのレベルをチェックすることができます, そしてまた、オフスピーカーを切り替え、ヘッドフォンを使用しています。

It is also important to have a good tone control circuit to adjust loudness at low levels.


A first block diagram is presented below. アンプのブロック図。

Monitor audio Amplifier

Looking through my things to select components for this project, I found the chassis from the preamplifier module of a soviet Reel to Reel deck Rostov 105. The chassis has all the controls i needed on the front panel including two nice needle VU-meters.

amp chasis

I took the chassis down and cleaned it and i verified all the pots and switches and cleaned them.

Audio Monitor Amplifier

For Power Amplifier i have a LM3886 stereo kit which will be extremely useful. I used this kit for a while and it has a decent sound being one of the best audio chips in my opinion. I attached this kit to a heatsink from a Yamaha A-500.

The kit also comes with a dual VCA chip for DC volume control, the M5283P. This is a very good solution to keep noise from potentiometer out of audio path.

モニターアンプM5283 dual VCA


I built a power supply for the amplifier section and mounted them on the chassis.

LM3886 Audio Amplifier

LM3886 power amplifier

LM3886 Audio Amplifier

LM3886 Audio Amplifier

Potentiometer controlling the VC input of the dual VCA chip.


LM3886 Audio Amplifier

In the next article i will discuss more about the VCA and build the tone control, metering circuits.

Thank you for visitng,